

■ PLC programming languages

- Anatomy of a ladder program
- Logic functions
- Logical continuity vs. electrical continuity
- I/O Mapping
- Mastering examine on and examine off instructions
- The PLC scanning process

PLC Programming Languages

- In the United States, ladder logic is the most popular method used to program a PLC
- This course will focus primarily on ladder logic programming
- Other programming methods include:
 - ☐ Function block diagrams (FBDs)
 - □ Structured text (ST)
 - ☐ Instruction List (IL)
 - □ Sequential function charts (SFCs)

Anatomy of a Ladder Program (cont'd)

- Input instructions are entered on the left
- Output instructions are entered on the right
- The power rails simulate the power supply lines
 □ L1 and L2 for AC circuits and +24 v and ground for DC circuits
- Most PLCs allow more than one output per rung

5

Anatomy of a Ladder Program (cont'd)

- The processor (or "controller") scans ladder rungs from top-to-bottom and from left-to-right.
 - ☐ The basic sequence is altered whenever jump or subroutine instructions are executed.

Logic Functions

- PLC programming is a logical procedure
- In a PLC program, "things" (inputs and rungs) are either TRUE or FALSE
- If the proper input conditions are TRUE:
 - ☐ The rung becomes TRUE and an output action occurs (for example, a motor turns on)
- If the proper input conditions are not TRUE:
 - ☐ The rung becomes FALSE and an output action does not occur

Logic Functions (cont'd)

- Ladder logic is based on the following logic functions:

 - □OR
 - Sometimes called "inclusive OR"
 - □ Exclusive OR

Logical Continuity

■ Logical continuity in a ladder rung occurs when there is a continuous path of TRUE conditions from the left power rail to the output instruction(s)

When there is logical continuity, the rung becomes true and the output becomes energized

Logical Continuity vs. Electrical Continuity

- Electrical continuity in an input circuit, occurs when there is a complete path for current to flow.
- A PLC input circuit is a simple series circuit consisting of a:
 - □ Power supply,
 - Switch, and a
 - □ Load
- When there is electrical continuity, a bit in the PLCs memory (sometimes called the input image table) is set to a 1.

I/O Mapping

- Every discrete input is assigned to a specific bit in the PLC's memory (input image table)
 - ☐ If there is electrical continuity, the bit is set to a 1
 - $\hfill\Box$ If there is no electrical continuity, the bit is reset to a 0
- Every discrete output is assigned to a specific bit in the PLC's memory (output image table)
 - □ In order for an output to turn on, its associated bit must first be set to a 1

Mastering Examine On & Examine Off Instructions

- Discrete input devices have normally open (N.O.) and/or normally closed (N.C.) contacts.
 - □ Example: Pushbuttons can be purchased with either N.O. or N.C. mechanical contacts.
 - ☐ "Normally" implies the state of the contacts when you are NOT pushing the button.

Mastering Examine On & Examine Off Instructions

Normally open (N.O.) vs. normally closed (N.C.) contacts:

Contact Type:	Resistance between contacts when NOT pushed:	Resistance between contacts when pushed:
N.O.	Infinite ohms	Zero ohms
N.C.	Zero ohms	Infinite ohms

31

Mastering Examine On & Examine Off Instructions

 PLC programs have both normally open and normally closed input instructions.

Mastering Examine On & Examine Off Instructions

■ The Examine On Instruction

This input instruction examines the specified bit for a logic 1. If the bit is a 1, the instruction is true, otherwise the instruction is false.

This is generally known as a **normally open** input instruction.

33

Mastering Examine On & Examine Off Instructions

■ The Examine On Instruction

This is the address assigned to the instruction (I:007/00).

Note: This instruction must be assigned a bit address, <u>not</u> a word address.

This is the instruction

Mastering Examine On & Examine Off Instructions

■ The Examine Off Instruction

This input instruction examines the specified bit for a logic **0**. If the bit is a **0**, the instruction is true, otherwise the instruction is false.

This is generally known as a **normally closed** input instruction.

3 5

Mastering Examine On & Examine Off Instructions

- Examine On instructions are also called:
 - □ XIC, eXamine If Closed
- Examine Off instructions are also called:
 - □ XIO, eXamine If Open

Note: The terms Examine on, Examine off, Examine if closed (XIC), and Examine if open (XIO) are unique to Allen-Bradley PLCs.

Off Instructions

Examine On and Examine Off Instructions that are True are highlighted green in the PLC programming software:

3

Mastering Examine On & Examine Off Instructions

A program can Examine On (or Examine Off) real inputs, real outputs, internal storage bits, timer done bits, etc.

Examine ON a real input

Examine OFF an internal storage bit

Examine ON a real output

The Scanning Process

- The scan sequence can be broken into two functional parts:
 - □ The Program Scan
 - Scan the ladder program
 - ☐ The I/O Update Scan
 - Write outputs, Read inputs

The Scanning Process

■ The Program Scan:

- ☐ For each rung executed, the PLC processor will:
 - Examine the status of the input image table bits,
 - Solve the ladder logic in order to determine logical continuity (is the rung true?),
 - Update the appropriate output image table bits, if necessary.

Note: The output will not actually be energized until the I/O update part of the scan.

15

The Scanning Process

■ The I/O Update Scan:

- □ Copy the output image table status to the ALL of the output terminals (discrete output circuits)
 - Power is applied to the output device if it's output image table bit has been previously set to a 1.
- □ Copy the status of ALL of the input terminals to the input image table
 - If an input is active (i.e., there is electrical continuity), the corresponding bit in the input image table will be set to a 1.

The Scanning Process

Most Allen-Bradley processors (controllers) have a 3-position keyswitch:

□ REM (Remote)

 In the remote mode, the PLC programming software (e.g., RSLogix5000) can be used to place the controller into the remote program mode or the remote run mode.

□ RUN

 When keyswitch is placed in the RUN mode, the controller is switched into the run mode. The PLC programming software cannot change the controllers mode.

□ PROG (Program)

 When keyswitch is placed in the PROG mode, the controller is switched into the program mode. The PLC programming software cannot change the controllers mode.

